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The problem of the indentation (without friction) of an absolutely solid body into an elastic layer is investigated. It is assumed 
that the diameter of the contact area which is unknown in advance, is small compared with the layer thickness. A model unilateral 
contact problem of the pressure on the elastic half-space of a punch with a surface which is close to an elliptic paraboloid is 
derived using the method of matched asymptotic expansions. The asymptotic solution of the model problem and the asymptotic 
form of the boundary of the contact area are constructed using Nazarov’s method. A uniformly valid asymptotic representation 
is found for the density of the contact pressures. The asymptotic solution of the axisymmetric problem is written out in explicit 
form. 0 2001 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

We will assume that a punch in the form of an elliptic paraboloid 

x3 = -0(x,,x2); @(X,.X*)=(2/?,)-‘x: +(2R*)-‘x: (1.1) 

is impressed into an elastic layer (with shear modulus p and Poisson’s ratio v) of thickness H, fixed to 
a rigid base (x3 = H), to a depth So without friction. Here, R,, R2 are the radii of curvature of the principal 
normal cross-sections of the face of the stamp at its vertex (R, Z- R2). We assume that the quantities 
S,, and RI, R2 are small compared with H. A small positive parameter is denoted by E and we put 

R, =ER;, R, =cR;. 6, =e6;, (1.2) 

where the magnitudes of S; and R;, R; are comparable with H. 
The vector u = (u,, u2, u3) of the displacements of the points of the elastic layer satisfy the unilateral 

contact problem (see [ 1, 21, etc.) 

L(v,)u(&;x) = -pv, ‘V&:X)-&vXVX +;X)=O, x3 E(O,H) (1.3) 

O3,(U;X)=CF32(U;X)=O, X3 =O (1.4) 

U3(CX) 3 ES; - @e(X,,X*), CT33(u;x) C 0 

[~3(E;X)-E8;+~,(x,,x2)]‘3,,(u;X)=0. x3 =0 
(1.5) 

u(&;x)=O, x3 = H (1.6) 

Here L(V~,) is the Lam6 operator and 03,(u) are the components of the stress tensor. The contact area 
(where the equality sign holds in the first inequality of (1 S)) is not known in advance and is determined 
by the condition that the contact pressures 

are positive. 

p(x,,xJ = -033(U;x,.x2*0) 
(1.7) 
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The axisymmetric problem (Rr = R2) has been studied in detail in [3]. The asymptotic solution of problem 
(1.3)-(1.6) is given by the “large h” method [4] in [5] by assuming that the contact area is bounded by an ellipse. 
This approach was also used when calculating the pressure of a punch in the form of an elliptic paraboloid on the 
boundary of an elastic three-dimensional wedge [6]. 

Another solution of the problem in question was constructed in [7] using Aleksandrov’s method [8]. An 
approximate equation was derived in [7], by approximating the regular component of the kernel of the integral 
o erator of the contact problem by a second-degree polynomial, for determining the density of the contact pressures 
p g (xi, x2), which enables the following exact solution (which vanishes on the contour of the elliptic contact area) 
to be constructed 

(1.8) 

To determine the major semiaxis a, the eccentricity e and the magnitude Q of the force acting on the punch, 
the following system of equations was obtained [7] 

-=-- 

Here 

D(e)=e-*[We)-E(e)], B(e)=e-2[E(e)-(l-e2)K(e)] 

where K and E are complete elliptic integrals of the first and second kind. The integral representation 

(1.9) 

(1.10) 

(1.11) 

is known for the coefficients a0 and al (see [3, 91). 
In the case of a layer which is rigidly bonded to a non-deformable base, 

L(u) = 
2xsh 2u - 4u 

2xch2u+1+x2 +4u2 ’ 
x=3-4v 

The numerical values of the coefficients a, for various values of Poisson’s ratio v are available in 
Table 1.2 in [9]. Independently of the earlier results in [7], a solution, which is similar to (1.8~(1.10) of the unilateral 
contact problem of the indentation of a punch (1.1) into the plane section of an elastic body was found in [lo] by 
the method of the matched asymptotic expansions [ll-131. In particular, it was found that formulae (1.8)-(l.lO), 
with appropriate values of the coefficients a0 and ul, give an approximate solution of the problem of the pressure 
of a punch in the form of an elliptic paraboloid on the centre of an elastic hemispere or a circular plate subject to 
the condition of axial symmetry of their fixing. The asymptotic form of the solution of the resulting problem (1.9) 
(1.0) was given in [lo] under assumption (1.2). 

It is also clear that solution (1.9), (1.10) also holds in the case of an elastic layer of finite thickness, coupled to 
an elastic half-space. The solution of the axisymmetric problem (for the values of the coefficients a,, see Table 2 
[14]) has been constructed in [14] by the “large h” method. Formulae are obtained in [15] which are convenient 
for practical calculations. A numerical solution of the non-axisymmetric problem for punch (1.1) is given in [16]. 

It has been shown using the example of a linear contact problem [17] that solution (1.8) of the so-called 
“combined” [18] integral equation of the contact problem, which is obtained by a method previously described in 
[8,7], possesses greater accuracy than the expansion in [5] found using the “large h” method . At the same time, 
an attempt to refine the asymptotic form using the method described in [7] or [lo] leads to the need to solve a 
unilateral contact problem for a punch bounded by a fourth-order surface. Generally speaking, the exact solution 
of this problem is unknown (see [19, 20, 51). 

In this paper (which is a continuation of [lo]), an asymptotic method [21], which was previously used to 
solve the contact problem in [22], is employed to construct the solution of the above-mentioned refined model 
of the unilateral contact problem (formulated in Section 3). It is possible, by this route, to describe successfully 
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the variation of the elliptic contact area and to obtain a uniformly valid asymptotic representation for the density 
of the contact pressures in explicit form. 

2. THE DISPLACEMENT FIELD FAR 
FROM THE CONTACT AREA 

We will denote the singular solutions of problems of the action in the boundary layer of a point force 
and the mth order polymoments which are applied at the origin of the coordinate system by G(x) and 
G(mT”)(x). The expansion 

G(x) = T(x)+ g(x), G-)(x) = S(m~n)(~)+g(m~n)(x) (2.1) 

in the singular and regular components holds. Here T(x) is the solution of the Boussinesq problems 
of the loading of an elastic half-space x3 2 0 with a single point force directed along the Ox3 
axiS 

S(msn)(~) = i3mT(x)/~x;l-"~x; 

Explicit expressions for the vector functions g(x) and g (mY “‘(x) can be obtained using a Fourier 
transformation (see [9], for example). 

Following the approach described previously [lo], we approximate the vector of the displacements 
of the points of an elastic semi-infinite body far from the point of contact by the sum 

u(E;x)= SG(x)+ C.NZ.nG(Z*a)(x)+ C.JU,,,G’~*“‘(~) (2.2) 
n=0.2 ~0.2.4 

With the aim of writing out the asymptotic form of U(E; x) when 1 x 1 = (.rf + x22 + xi)‘” A 0, we use 
the formula 

(2.3) 

where V?(x), . . . , V” Ntmj(~) is a basis in the space of the homogeneous vector polynomials of degree m 
which satisfy the homogeneous Lame system (1.3) in the half-spacex3 > 0 and the boundary condition 
that its boundary is stress-free: N(m) = 3(m + 1). Explicit expressions for the vectors Vr(x) (form = 
1, 2, see [18]) are not subsequently needed. We also note that, by virtue of the axial symmetry, many 
of the coefficients g,, k in (2.3) are equal to zero. 

The following formula is necessary in order to derive the resulting unilateral contact problem for 
the inner asymptotic expansion 

x,.x2,0) = A, + A2,0~; + Ao,2~; + A4,0x; + A2,2~:~; + Ao,4~; + . . (2.4) 

4 = -27 A,,, = A,,, = -5, A4,o = A,,, = _$, A,., _&$ (25) 

where uo, al and a2 are the coefficients of (1.1) 
Expansions similar to (2.3) and (2.4) hold in the case of the vector function gCm,“)(x). The coefficients 

(2.0) = (2.2) _ 201 
A0 A0 

H3 ’ 
A;T,jO;P’ = 45” = _ 3, A$$“’ = A;;63 _ “H42 (2.6) 

(2.7) 

will be required later. 
According to assumption (1.2) when E + 0 we establish the following orders for the coefficients in 

the outer asymptotic expansion (2.2) , 
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9. = E2i12’, .A& = E4.A&, 4, = e6.ht1c;*, (2.8) 

Relations (2.8) follow from formulae in Hertz’s theory (in particular, see [23, Chapter 5, 
Section 6.51). 

3. ASYMPTOTIC MODELLING OF THE PRESSURE OF 
A PUNCH IN THE FORM OF AN ELLIPTIC PARABOLOID ON 

AN ELASTIC LAYER 

In the neighbourhood of the punch, we change to the “extended” coordinates 

S=(5,&,53); 6; =&-IX; (3-I) 

and formulate the problem for the inner asymptotic expansion W(E; 5) in the half-space es 3 0. Relations 
(1.3) and (1.4) give 

L( V&E; 5) = 0, 5s < 0; 03,(w;&) = cr32(w;5) = 0. 5s = 0 (3.2) 

We will restrict the unilateral contact boundary condition (1.5) to the domain 

o* = {({J,): (25;R;)-‘5: +(2S;R;)-‘5: c I] 

which necessarily includes the required contact area (outside the domain w’ the surface of the punch 
is located above the level of the unperturbed boundary of the elastic layer). We have 

o,,(w;s,o)=o, 5=(5,&)CO* (3.3) 

W+;S,o)~ &(a; -@‘(5,&J) cr,,(w;~,O)~ 0, 

(3.4) 

[w~(~;~,o)-e($-~‘(5,.52))]~~~(W;~,0)=0. 5’E0* 

(o*(E,,&,) = (243-15: +(4-k: 
y.;ations (3.2)-(3.4) are closed by the asymptotic condition for the behaviour of the vector W(E; 5) when 

-+ 00, which we obtain by matching with outer expansion (2.2). 
We substitute expression (2.8) into (2.2) take account of the asymptotic formulae of the type of (2.3) 

and introduce the extended coordinates (3.1). In the matching region {x: \&H/2 G Ix] s l&H}, we 
therefore find 

v(&;&S) = E 9*T(Q+ 
[ 

&t4;,nS(2*n)(Q+ CM;,,S’4*“‘(Q + 
n=0.2 n=0.2.4 1 

+&2[V*(e;S)+O(E51SIS)] (3.5) 

Here, V*(E; 5) is a fourth-degree vector polynomial 

V*(&;Q= 2* g(O)+ &~&J(S) + 
m=l k=l 1 

+E2 &t4, ; n + E4 CA’, n g’4*“‘(o) 
n=0.2 1 ~~0.2.4 ’ 

(3.6) 

Taking account of relation (3.5), we derive the above-mentioned condition 
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w(E;~)=E~V*(E;~)+E !?L’T(Q+ C.M;,,S’23”‘(s)+ &U;,,S’4*“‘<~) + 
nr0.2 n=0.2.4 1 +0(151-')~ IsI+- (3.7) 

The solution of problem (3.2)-(3.4) (3.7) can be written in the form 

w(&;~)=&*V*(&;~)+EW(E;~) (3.8) 

where W(E; E,) is a vector function which vanishes when 15 1 + ~0 and satisfies relations (3.2) and (3.3) 
and the boundary condition 

&@;51,0)2 s;, -@*(5,.5*)-EV;(E;5), a,,(W~;‘,O)s 0 

(3.9) 

As a consequence of matching condition (3.7), the equations for determining the quantities 2*, 
.A& (n = 0, 2) and .M.&, (n = 0,2,4) will be 

Here oe’ is the contact area corresponding to the displacement vector W(E; 
coefficient. 

5) and Ci is a binomial 

Thus, in the case of the vector function W(E; <), the unilateral contact problem of the pressure on 
an elastic half-space of a punch with a face represented by a fourth-degree polynomial is obtained. 

Let us put 

(3.10) 

(3.11) 

9’ = Q' +~~q*, Ai,. = I%(,, +~~mi,~, m = 2,4 (3.12) 

Now, while remaining within the accuracy to which problem (3.2)-(3.4) (3.7) is valid, we will simplify 
the right-hand side of the first inequality in (3.9) rewriting it as follows: 

6; -~*(5,.52)-EV;(E;5,,52~0)= 6; -~~(5,,52)-E5~~(5,152) (3.13) 

From relations (3.6) and (2.3) (2.4) taking (3.12) into account, we obtain 

6; = 6; - E&A0 - E3 c II&A;*.“) 
n=o.* 

(2/?;)-’ + E3$A,,, 1 5; 

(3.14) 

(3.15) 

A tilde over the symbols Q’ and M, denotes their multiplication by (1 - v)(27cu)-’ (see the second 
formula of (1.9)). 

Since only terms of the order of E’ compared with unity have been retained when setting up the left- 
hand side of relation (3.13), we put 

(P&.52) = G(A4,oS; + J42.25:5,2 + AO.4q+ 

(3.16) 

The quantities 86, h;Ii$ and n;/;y,, correspond to the zeroth approximation (we must put E = 0 in (3.9)) 
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and they are calculated using formulae (3.10) and (3.11) for the Hertzian density of the contact pressures 
(1.8). We have 

where ai and e. are, respectively, the major semiaxis and the eccentricity of the Hertzian contact area 
(when the layer is replaced by a half-space). 

4. ASYMPTOTIC SOLUTION OF THE MODEL 
UNILATERAL CONTACT PROBLEM 

We shall seek a solution W(E; Q, which vanishes at infinity, of problem (3.2), (3.3) (3.9) taking 
(3.13)-(3.16) into account, using the method described previously in [21] in the form of two asymptotic 
approximations: an outer expansion which holds far from the contour I; of the required contact area 
o’, and an inner expansion for the small neighbourhood Ii. 

We will denote the sum 

S~(E;E)=S~O(E;~)+E’~‘(E;~ (4.1) 

as the outer asymptotic expansion for the vector W(E; k), where v”(E; 5) is the solution of the contact 
problem on the indentation into an elastic half-space 5s 5 0 to a depth S*, of a punch in the form of an 
elliptic paraboloid k3 = -0; (k,, 52) (for the expressions for SE and @z (51, ?,z), see (3.14) and (3.15)). 
We will write the vector function T’(E; 5) in the form of the generalized potential of a simple layer 

with a contact pressure distribution density 

P”(G&2)= Pot’ (4.3) 

* 

po = ,,,,*ytL * H*(~,,~2)= l-5:- 
i 

st 
(a*)2 (L)z(l -eZ) 

The elliptic contact area wi with contour I*, (the dependence of CI$ and r’, on the parameter E is not 
indicated) corresponds to displacement vector (4.2). The major semiaxis and the eccentricity of the ellipse 
I; are denoted by a* and e. To determine Q*, a* and e using Hertz’ formulae, we have the following 
system of equations 

6; - E$A, - E3 (2.n) _ 3C?* x I$,&, 
n=0.2 

- ?K(e) 

I+E~~G*A,,, =- 
fc 

‘“; D(e), 
30. B(e) 

( ) 
a* 

I+E32(&&,2 =-- 

R; 
( 1 
a* 3 l-e2 

(4.4) 

(4.5) 

Finally, taking account of relations (3.12), (4.1) and (3.10) (3.11) we supplement Eqs (4.4) and (4.5) 
with the relations for the polymoments occurring in (4.4) 

M ;,. = IO-‘Q*(ai)‘, A!;.2 = 10-'Q'(a~)2(1 -e’) (4.6) 

Substituting expressions (4.6) into Eq. (4.4), we reduce system (4.4) (4.5) to the form (1.10) (1.11). 
We will now describe the behaviour of the integral (4.2) and its density (4.3) in the neighbourhood 

I$ of the domain C& (see (24, 251, etc.). We define the contour I; by the equations 
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51 =a*cosG, t2 =a’Jl-e* sin0 

where cr is a parameter. Then, the unit vector of the inward normal (with respect to the domain 0;) to 
To is 

n(a)=-(l-r2cos2~)‘K[J~cosoel +sinae2] 

In the spatial neighbourhood of the contour ri, we introduce the system of coordinates v, &, o, 
associated with the Cartesian coordinates by the formulae 

5, =a*coscr+vn~(o), c2 =a*Jl-e* sina+vnf(a) 

Moreover, in the n(o) planes, which are orthogonal to rb, we introduce the polar coordinates r and cp 
such that 

v = rcoscp, t3 = rsin cp, cp E [O,a] 

By simple calculations for the density of the contact pressures (4.3) we find 

pO(&;~,,5*)= -(2x)-“*k0*(o)r”* +0(F), F-+ 0 (cp =O) (4.7) 

(4.8) 

By introducing the projections onto the unit vectors of the local system of coordinates 

@V” = n”gro +n”gro n @tJ”o = nave - nagra II 223 I 21 12 

in the plane n;(o) for the vector (4.2) when r + 0, we can derive the following expansion 

Here, X1”, X2” and X2P2(r, cp) are the translational displacements along the unit vectors no, e3 and the 
rotation with respect to the unit vector to (tangential to ri). The quantity 2u( 1 -v)-’ By2 has the meaning 
of the intensity of the stretching of the elastic half-space at the points of the contour 6; in the direction 
of its normal. In (4.9), we have used the notation previously adopted in [25] in which 

X’J(r, cp) = PW3((p) 

where 0”3((p) is a vector with the polar components (z = 3 - 4v) 

@i3(cp) = (2x)-“*(4u)-I[(% x+l)sin(cp/2)-Ksin(Scp/2)] 

The vector ‘V’(E; E,), which is the principal part of the asymptotic form (4.1), also determines the main 
approximation oi to the required contact area w:. When constructing the vector function V’(E; Q, we 
shall assume that the quantities Q’, u* and e are known. We emphasize (see [lo]) that it is easy to obtain 
the asymptotic solution of (4.4)-(4.6) (apart from terms of the order of E’ inclusive). These formulae 
are not written here because of their length. 
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5. PERTURBATION OF THE HERTZ DISPLACEMENT FIELD FAR 
FROM THE CONTOUR OF THE CONTACT 

Following [21], we denote the integral (4.2) with a density which satisfies the equation 

as the correction ‘V’(&; 5) in the outer asymptotic expansion (4.1) of the vector W(E; 5). The right-hand 
side of Eq. (5.1) is the fourth-degree polynomial (3.16) and, according to Galin’s theorem (see [26, $9, 
Chapter 2]), the formula 

holds for the solution of Eq. (5.1). The coefficients in the numerator of the fraction (5.2) can be expressed 
in explicit form in terms of the coefficients of the polynomial cp&, c2) using formulae in [3, 9, 20\ 
Here, the quantity c& is dimensionless and the dimensions of C* 
and LA respectively, where L has the dimension of length. 

*s, co2 and cio, ci2, CL are equal to L- 

The density (5.2) unlike (4.3) possesses a root singularity on approaching the contour l?;, that is, 

P’(E: 5,, k2) = -(2R)-% K’*(o)r-% + O(ryz), r + 0 (5.3) 

The quantity K’*(o) has the meaning of the compressive stress intensity factor and is equal to 

2xu &(l - f?2)K(/)K 
K”(o)=-- 

1-v (I-e2cos20) % 1 c~+(a’)2[~~ocos2cr+~~2(1--.2)sin20]+ 

+(a*)4[c~~c0s4~+~~2(I-~2)c0s2~sin2o+c~(l-e2)2sin4o]) (5.4) 

In turn, the formula 

W,‘n”(o)+V:e3)tc r, cp, 0) = i B/,,(o)Xivo + K”(o)X’*‘(r, cp)+O(r) 
i=l 

(5.5) 

holds for the component of the vector Zr’(&; 5) in the plane n(o) when r + 0. Here, X”‘(r, cp) = h-I@(cp), 
where ai” is a vector with polar components 

a,.‘@) = (2~)-~(4u)-‘[(2 x-l)cos(cp/2)-cos(3~/2)] 

~~‘(cp)=(2n)-%(4~)-‘(-(2x+I)sin(cpl2)+sin(3~/2)] 

Since, at infinity, the vector V(E; 5) must serve as an approximation to the vector W(E; 0, according 
to (3.7) and (3.8) when 151 + 00 we have 

‘V(E; 5) = Q*T(@+ C A4;,nS(2*n)(&)+ C At&S(4*n)(5)+ O(l El-‘) 
n=0,2 n=0,2,4 

(5.6) 

Now, substituting expressions (4.1) and (3.12) into relation (5.6) we find (see [X3], for example) that 
the quantities q’ and m;,, from (3.12) are the integral characteristics (the resultant and polymoments 
of order m) of the densityp’(c; ci, c2). 

By construction, the vector function Y”(E; 5) satisfies relations (3.2) and (3.3) and leaves a small 
discrepancy o(E’) in the boundary condition of unilateral contact (3.9) within the domain 0’0 far from 
its boundary ri. In the neighbourhood of rb, where the density p’(&; 51, 52) is unbounded, the 
phenomenon of a plane boundary layer arises. 
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6. A PLANE BOUNDARY LAYER. VARIATION OF THE BOUNDARY OF 
THE ELLIPTIC CONTACT AREA 

Let us assume that the contour I: of the required contact are a wi in the local coordinates is described 
by the equation 

v = h&J); h,*(o) = &Q’(0) (6.1) 

where h*(o) is a function to be determined. In the planes n(o), which are orthogonal to I’;, we introduce 
the extended variables 

rl=ol17q2); I’ll = E+, q2 = E-‘t,3 (6.2) 

Then, the equation of the required boundary of the contact area takes the form rll = h’(o). 
Following the approach described previously in [21], we will seek the projection Pr,(,,W(&; 5) of the 

vector W(E; E,) onto the plane n(o) in the neighbourhood of I’; in the form of the sum 

~(&;~)=~o(O;~)+&5’2~‘(6;~)+E5~2(6;q)+E’5’2~3(~;r)) (6.3) 

Suppose p = ~-~r and cp are polar coordinates, corresponding to the Cartesian coordinates of (6.2). We 
now introduce another polar system of coordinates ph and (ph E [0, n] with the pole at the point 
ql = h*(o), q2 = 0. Then, the lowest term of expansion (6.3) turns out to be [21] 

Note that vector function (6.4) is chosen such that the contact pressure, corresponding to (6.3), vanishes 
on the boundary of the contact area. Explicit expressions for N(o) and h*(o) are determined by matching 
the outer and inner asymptotic expansions (4.1) and (6.3) respectively. 

We now collect (4.9) and (5.5) into a single formula and, in the resulting expression, we change to 
the extended variables (6.2). As a result, we obtain the asymptotic formula 

Pr ncaj~(&; 5> = i ~;&S)x”” + E5i (4~2(0)xi’2(~, Cp)+ &(@xi’o)+ 

i=I t=l 

+&‘5’2[k0*(o)X’~3(p, cp)+ K’*(a)X’*‘(p. cp)]+o(&‘“p, &‘OP2) (6.5) 

for the projection of the vector V”(E; 5) onto the plane n(o). 
Comparing (6.5) with (6.3) we find 

WO(o; r)) = $ B~o(o)x’~O, glr’(a;V-+O 
i=l 

W2(cT; q) 5 ,; (B;,o(a)Xi*o + 490)xi*2(P~ 0)) 

Next, by invoking the formulae 

i?p,, Iah’ = -coscp. &p,, I ah* = p-’ sin cp 

which hold when 12’ = 0 (see [27]) for large values of pII, we derive 

Using this relation, we match expansions (6.5) and (6.3) in the zone p/u* = O(E~/~) where the error in 
formula (6.5) proves to be small compared with the terms in (6.3). We therefore arrive at the eyualities 

N(G) = kO’(o). -X h’(o)N(o) = K”(o) 

from which the relation 
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h’(o) = 4x’ ‘(o)/ko*(o) (6.6) 

follows. 
Formulae (6.6) and (6.1) largely determine the position of the boundary r:. Note that, in much the 

same way as the higher terms of expansion (6.3) did not participate when deriving equality (6.6), in the 
case of the functions VP (E; r, cp, a) + &f (E; r, cp, CT), the boundary layer function of the form (6.3) 
with zero second and fourth terms is independently finely adjusted. 

7. THE ASYMPTOTIC FORM OF THE CONTACT PRESSURE 

According to representation (4.1) the pressure under the punch far from FE is calculated using the 
formula 

P(&;5,~52)‘=p”(&;5,~5*)+E5p’(&;5,.5*) (7.1) 

The terms are written out in (4.3) and (5.2). 
On the basis of equalities (6.3) and (6.4) in the neighbourhood of r:, we obtain the relation 

Relations (7.1) and (7.2) are respectively the outer and inner asymptotic expansions. The following 
formula, which combines (7.1) and (7.2), gives the uniformly valid asymptotic representation for the 
contact pressure 

6%: st P(E;c,*r*)= PO I--- 
\ (a*)2 (a’)*(1-e2) +ESc’(5,* 52) (7.3) 

On achieving coincidence of the two-term asymptotic form (7.3) with (7.1), we obtain 

Cf(5,, 5*) = -4x(oa)*(3L1*)-‘JY-$ -c c& + c;&: + c&t; + c;b5f + c;*5;5; + c&t;) (7.4) 

In this case, the behaviour of the density (7.3) at the boundary of the contact area is characterized by 
formula (7.2). 

Note that, on transforming the density of the contact pressures (7.3) to the initial coordinates x, and 
x2, it is necessary to recall formulae (3.1) and a/ax, = E-*X& relations (1.7) and the following: &xi, 
x2) = -G~~(W; l$, c2, 0) (see (1.7) and (3.8)). 

It has been shown above that the asymptotic form of the contact force Q = E~Q* + &‘q* is found 
using outer asymptotic expansion (7.1). Avoiding the calculation of the density (5.2) an explicit 
expression for the correction q’ can be obtained in terms of the right-hand side of integral equation 
(5.1) using Mossakovskii’s theorem (see [28] and, also, [26, § 10, Chapter 21) in the form 

(7.5) 

Using the reciprocity theorem, it was shown for the first time in [28] that it is possible, in addition, 
to obtain a formula similar to (7.5) for the second-order polymoments 

m;,=- 

From known results [3,29], we find 

(7.6) 
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7tf(c,, e2)= Cj(e)[oj +(a’)-*Cf -(303-j -1)-'(a')-*5:1 

C,(e) = 
Z(a, -e*)* 

(30: -e*)(l -ol)[K(e)-302D(e,)] 

C2 (e) = 
2a;(3o, - I)* 

(30, - el )(34 - e*)[o,C(e) + (20, - l)D(e)] 

30,,,=l+e*+ 7; l-e +e C(e) = es2[2D(e) - K(e)] 

Integrals (7.5) and (7.6) are easily evaluated using formula (52.21) in [3]. We also note that the simple 
result 

~;.,<51.52)=2[D(e)-C(e)l-‘(a’)-25,52 

is obtained for the mixed polymoments mil. 

Remark. Suppose a punch is indented into an elastic layer which is bounded by the surface 

x3 =(2&x: +(2R*)-‘x; +b&& +6*& +6@& 

Then, from the preceding considerations, we have the following approximate formula, which refines (1.8) for the 
contact pressure under the punch 

(7.7) 

where the set Q, a and e is the solution of problem (1.9) (1.10). The fourth-degree polynomial C&i, x2) 
in (7.7) is recovered from formula (7.4) using solution (5.2) of integral equation (5.1) with a right-hand side 
-[(p&, c2) + b;,& + b&~$t: + b&l. At the same time, the asterisks are disposed of and the variables ci, c2 
are replaced by xi, x2 in the last expression and in formulae (7.4) (5.2) and (5.1). 

8. THE AXISYMMETRIC CASE 

Since, in this case, a solution of the model problem for inner asymptotic expansion (3.8) can be easily constructed 
using well-known results [19, 291, the expression for the unilateral contact boundary condition (3.9) cannot be 
simplified as was done in (3.13). Moreover, separating the terms O(i?) in (3.13) only makes the solution more 
complicated. Therefore, instead of formulae (3.13)-(3.16) in accordance with relations (3.6), (3.9) and (2.4)-(2.7) 
we shall use the following 

03.1) 

4 ,+3II -*__E -4,. 

HjQ 

5 8a2 - * 

HS 
A; =-2% -* 

HSQ 

Here, P = (Sf + 52) * “2 is the polar radius in the system of coordinates (3.1) and _Uk is the polar polymoment or 
order m, calculated using the formula (compare with (3.11)) 

A; =--$ jj (6: +522)m’2033(W;5,,52.0)d5,dS2. m=2.4 (8.3) * 
WC 

Using the formulae in [19, Chapter 3, Q 21, we find the following expression for the density of the contact pressures 

(8.4) 

Here a* is the radius of the contact area, to determine which we have the equation 
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s: =2h;(a*)* ++Jr?*)’ (8.5) 

On integrating the density (8.4), we tix the first matching condition (3.1) 

Q*= 16F -(a’)) 
3(1 -v) (8-6) 

In the axisymmetric case, matching conditions (3.1) are replaced by (8.3). Substituting expression (8.4) into (8.3), 
we obtain 

(8.7) 

The system of equations (8.5)-(8.7) serves to determine the quantities a’, d, At; and At;. We substitute the second 
expression of (8.1) and expression (8.2) into relations (8.5)-(8.7) and, neglecting quantities of a higher order of 
smallness compared with those retained in (8.1) and (8.2) we calculate the equations relating the quantities 
8; and a*, Q*. Thus, by confining ourselves to the leading terms of the asymptotic form in (8.7) we transform 
Eqs (8.5) and (8.6) to the form 

$=-- 4 (a’)) 37r R’ ,_a 3 8~1 (a*)3 5 3nH)-& -- 128u2 (a*)5 1 15X H5 

The following will be the consequence of Eqs (8.8) and (8.9) 

(8.8) 

(8.9) 

(8.10) 

Following the approach described earlier [3], we now introduce the large parameter h = H/a, where a = FLZ* is 
the actual radius of the contact area. Then, taking account of relations (1.2) and (2.8), we write Eq. (8.9) in the 
form 

Q=$( ,_~-394-5 12802 3n - 
157t 1 

Finally, using equalities (8.8) and (8.9) Eq. (8.10) takes the form 

(8.11) 

(8.12) 

Relations (8.11) and (8.12) refine the well-known result in [3] (see formulae (49.2 and 49.3)). 

Remark. The unusual “concept of the structural stability of the solution of a contact problem in the linear theory 
of elasticity as the conservation of diffeomorphic equivalence by the contact pressure in the case of a small 
perturbation in the shapes of bodies” was introduced in [30]. The examplei constrycted in [30] of structural stability 
in an axisymmetric problem for a punch with a form function Q(p) = Arp + A2p IS devoid of mechanical content. 

Actually, it is well known [19] (also, see [31]) that the equation, relating the displacement of a punch Sa with 
radius of the contact area a, has the form of (8.5). The positive root of the quadratic equation (8.5) can be 
transformed to the form 

a* =Sa(At + At +~A2Se)- JV (8.13) 

As in [30], we assume that the initial shape of the punch is specified by the term Alp2 and that the term A2p4 
will be the perturbed shape. Then, for a fixed value for the embedding depth of the punch Sa, the value of the 
right-hand side of equality (8.13) will differ only slightly from the specified value 6,/(2A,) for any sufficiently small 
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perturbation. We also arrive at this conclusion in the case of a fixed value of the force Q which impresses the punch 
(see Eq. (8.6)). 

However, if, as was done in [30], the constraint 

g&a2 = 3A1 (8.14) 

is initially imposed on the quantities a, Al and AZ, then a ’ = 3A1/(8A2) follows from the same equation (8.14). We 
therefore obtain, as a consequence of the last equality, that the value a of the radius of the contact area, and “together 
with it the compressive stress can be very large in the case of a small perturbation”, that is. when the magnitude 
of A2 is very small [30]. We emphasize that this inference is obtained directly from constraint (8.14), imposed a 
priori on the magnitudes of a, 1\, and AZ, which arose in [30] from the requirement (which does not make any 
mechanical sense) that the second derivative of the density of the contact pressure (8.4) with respect to the radius 
should vanish at the centre of the contact area. 

9. CONCLUSION 

We recall that the approximate solution of the contact problem for an elastic layer which has been 
constructed also remains valid, for example, in the case of the pressure of a punch on the centre of a 
circular elastic plate. It is only necessary to calculate the values of the corresponding coefficients (see 
(2.5)-(2.7)), the characteristic dimensions of the plate and the conditions under which it is clamped. 

It is clear that the effectiveness of the implementation of the method used [21] when solving the model 
problem of unilateral contact rests on the possibility of constructing the solution of a contact problem 
with an elliptic contact area in explicit form. The question of the further refinement of the results which 
have been obtained therefore remains open. In the case of the axisymmetric problem, no fundamental 
difficulties are encountered in constructing the next approximations. 
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